Monday, September 30, 2013

SAFELY DISCHARGE X CAPACITORS ELECTRONIC DIAGRAM

SAFELY DISCHARGE X CAPACITORS ELECTRONIC DIAGRAM


When the AC voltage is disconnected, CAPZero automatically and safely discharges the X capacitor by closing the circuit through the bleed resistors and directing the energy away from the exposed AC plug. This approach provides engineers with total flexibility in their choice of the X capacitor used to optimize differential- mode EMI filtering without worrying about the effect of the required bleed resistors on system no-load and standby power budget. The innovative design inherently meets international safety standards for all open and short-circuit fault tests, allowing CAPZero to be used before or after the system input fuse. CAPZero is suitable for all AC-DC converters with X capacitors that require very low standby power. It’s offered with 825- or 1,000-V MOSFETs to support a variety of power supply design needs. It is ideal for a wide range of applications, including PCs, servers/workstations, monitors and TVs, printers and notebooks, and appliances requiring EuP Lot 6 compliance and adapters requiring ultra-low no-load consumption. CAPZero devices are available now in an SO-8 package at $0.40 each for 10,000- piece quantities. [www.powerint.com]
Read More..

Sunday, September 29, 2013

5V DC REGULATED PHONE CHARGER ELECTRONIC DIAGRAM


5V DC REGULATED PHONE CHARGER ELECTRONIC DIAGRAM

Regulated phone charger which is used as an emergency charger for mobile phones with source from ordinary batteries, and works with 1.5V input DC voltage. At 5V, it can provide output to 70mA. If the current is drawn, the voltage will be drop. A006 microcontroller is used to create square wave which used to drive the Field Effect Transistor BBV93.
Read More..

Saturday, September 28, 2013

Flickering Light II

Regardless of whether you want to effectively imitate a house fire, a campfire, or light from welding, the circuit described here fills the bill without using a microcontroller, although it does use a larger number of components (including some truly uncommon ones). The circuit is based on three oscillators, which are built using unijunction transistors (UJTs). Each oscillator has a different frequency. The output voltages are mixed, which produces the flickering effect. A unijunction transistor consists of an n-type bar of silicon between two ohmic (non-barrier) base contacts (B1 and B2). The effective resistance is controlled by the p-type emitter region. The designation ‘transistor’ is a somewhat unfortunate choice, since it cannot be used for linear amplification.

UJTs are suitable for use as pulse generators, monostable multivibrators, trigger elements and pulse-width modulators. If a positive voltage is applied to the emitter (E), the capacitor charges via the resistor. As soon as the voltage on the emitter reaches approximately half the supply voltage (for a 2N2645, the value lies in the range of 56–75 %), the UJT ‘fires’ and the capacitor discharges via base B1 and the resistor, generating a positive pulse. The UJT then returns to the non-conduct state, and the process just described repeats periodically. The frequency can be approximately given by the formula f ˜ 1/(RC) The frequency is independent of the value of the supply voltage (which must not exceed 35 V).

The maximum emitter blocking voltage is 30 V, and the maximum permissible emitter current is 50 mA. The values of resistors R1, R2 and R3 can lie between 3 k? and 500 k?. If necessary, the frequency can be varied over a range of 100:1 by using a trimpot instead of a fixed resistor. The frequencies from the three pulse generators are mixed by connecting them to the IR diode of a triac optocoupler via R4. The optocoupler, a type MOC3020, K3030P or MCP3020, can handle a maximum load current of 100mA. The triac triggers at irregular intervals and generates the desired flickering light in the two small lamps, L1 and L2, which are connected in series to the transformer secondary.
Flickering Light II Circuit DiagramThe light effect can be noticeably improved by using a MOC3040, which contains a zero-voltage switch, since its generates irregular pauses of various lengths when suitable frequencies occur in the individual oscillators. The zero-voltage switch does not switch while the current is flowing, but only when the applied ac voltage passes through zero. An integrated drive circuit (zero crossing unit) allows full half-waves or full cycles to pass (pulse-burst control) Due to the flickering effect arising from its switching behaviour, it is not suitable for normal lighting, but here this just what we want. This version of the optocoupler is also designed for a maximum current of 100 mA.

For a small roof fire or the light of a welding torch in a workshop, two small incandescent lamps connected in series and rated at 6 V / 0.6 A (bicycle taillight bulbs) or a single 12-V lamp (rated at 100 mA) is adequate. If it is desired to simulate a large fire, a triac (TIC206D, rated at 400 V / 4 A, with a trigger current of 5 mA) can be connected to the output of the circuit and used to control a more powerful incandescent lamp. As continuous flickering looses its attraction for an interested observer after a while (since no house burns for ever, and welders also take breaks), it’s a good idea to vary the on and off times of the circuit. This is handled by a bipolar Hall switch (TLE4935L), which has such a small package that it can fitted between the sleepers of all model railway gauges, including Miniclub (Z Gauge), or even placed alongside the track if a strong permanent magnet is used.

If a magnet is fixed somewhere on the base of a locomotive such that the south pole points toward the package of the Hall switch (the flattened front face with the type marking), the integrated npn transistor will switch on and pull the base of the external pnp transistor negative, causing the collector–emitter junction to conduct and provide the necessary ‘juice’ for the unijunction transistors. If another traction unit whose magnet has it s north pole pointing toward the Hall switch passes a while later, the switch will be cut off and the flickering light will go out. Of course, you can also do without this form of triggering and operate the device manually.
Read More..

Friday, September 27, 2013

A 12V Car Charger For ASUS Eee Notebook

The ASUS Eee is a fantastic ultra-portable notebook with almost everything required for geeks (and nothing that isn’t). Plus it features fantastic build quality and is very well priced. If you live in New Zealand you can get them from DSE; at the time of writing they are the exclusive supplier. I worked out it’s the same cost as importing one once you include all the duties and tax, plus you get the advantage of a proper NZ-style mains charger. Anyway, being so small I thought it would be nice to be able to carry this around in the car. Unfortunately I couldn’t find a car charger available anywhere at the time so I decided to tackle the problem myself. As a bonus this provides an opportunity for an external high-capacity battery.
asus eee 701
Commercial Equivalent:
I thought at this stage it would be worth noting that a commercial car charger is now available for less than it cost me to build this from Expansys and is available in most countries (select your location on their site). It outputs 9.5v from 10-18v in at up to 2.5A. I’d actually recommend it over the design here is it seems to perform better at lower voltages (that one works down to 10V). However I have kept this page up as a reference for those who enjoy tinkering.
Design:
The charger included with the Eee is rated at 9.5v, 2.315A. There isn’t a fixed voltage regulator available for this exact voltage, so the circuit needed to be designed around an adjustable regulator. I decided to design the charger around the LM2576 “Simple Switcher” IC from National Semiconductor. There are tons of ICs like this available, many of which are a bit more efficient, however I selected this one because it is readily available and relatively cheap. It also has a lower drop-out voltage (~2V) than many other chips I looked at which is important when powering the device from a car or 12v SLA battery.
eee_car_charger_circuit d
This circuit could have used a standard three pin regulator IC such as the LM317, however most types require an external transistor when handling so much current and not to mention the fact that they are very inefficient; they draw the same amount of current from the input as the load and the difference in power is dissipated as heat. The main problem with using the LM2576 is the fact it needs quite a large inductor due to its somewhat low switching frequency. The inductor I used is made by Pulse Engineering, part number PE92108KNL. I’d prefer a smaller one, however I couldn’t find one capable of supplying the required current that I could purchase in single units. Besides the PE92108KNL is apparently designed specifically to work with the LM257x series.
charger_case_opens
The circuit also includes a low voltage cut-out based on a 9.1v Zener diode and BC337 transistor that will shut down the regulator if the input voltage is below 11.5V. This prevents unstable operation of the regulator at lower input voltages, and also helps prevent accidental flattening of the supply battery. Substituting this transistor for similar type may affect the cut-out voltage; the Vbe of the transistor should be 1.2v.All of the components used should be pretty readily available in most areas. I got everything from Farnell. Jaycar also sells everything except the inductor. Make sure you specify high temperature, low ESR capacitors as these help result in more stable operation and better efficiency of the charger.
eee_car_charger_schematic_monow
Unfortunately the end result is a charger that is slightly bulkier than I would really like. I attempted to fit this inside an old mobile phone charger case so the whole thing could hang out of the cigarette lighter, however I ran into trouble making the circuit stable enough and dissipating all the heat. Due to the high current involved compared to a mobile phone charger the components are much bulkier so it’s pretty tricky to get all to fit! If I do get it finished I’ll add an update.
Parts List:
  • 2x 10k resistor (R1 & R4)
  • 2x 22k resistor (R2 & R3)
  • 1x 1.5k resistor (R5)
  • 1x 120μF 25v electrolytic capacitor (C1)
  • 1x 2200μF 16v electrolytic capacitor (C2)
  • 1x 1N5822 Schottky diode (or equivalent)
  • 1x 9.1v 0.5W Zener diode
  • 1x BC337 NPN transistor
  • 1x LM2576T-ADJ IC
  • 1x 100uH, 3A inductor (e.g. Pulse PE92108KNL)
  • 25°C/W or better minature heatsink (e.g. Thermalloy 6073)
  • Cigarette lighter plug with 3A fuse and 2.1mm DC plug (e.g. DSE P1692)
  • 2.1mm DC chassis mount socket
  • 1.7mm x 4.75mm (ID x OD) DC plug and cable
  • Small plastic enclosure
Building It:
Make yourself a PCB using the template below (600dpi). I simply laser print (or photocopy) the design onto OHP transparency sheet and then transfer the toner onto a blank PCB using a standard clothes iron. Any missing spots can be touched up with a permanent marker before etching. This is quick, usually results in pretty tidy boards and hardly costs a thing. There is a tutorial on a variation of this method at http://max8888.orcon.net.nz/pcbs.htm.
eee_car_charger_pcbs
Install the components on the PCB and triple check the layout before soldering. It is much easier to start with the low profile components such as resistors and diodes, then install the larger components after-wards. Don’t forget the wire link; this is shows as a red line on the layout guide above. Remember to smear a small amount of heatsink compound on the regulator tab before mounting the heatsink.
eee_car_charger_pcb_layoute
For a case I used a small plastic enclosure from DSE, part H2840, as it was all the local store had in stock that was remotely suitable. The PCB is designed to fit into this particular case, however any small box should be suitable. If you have a dead laptop charger lying about it might be worth ripping the guts out of that and salvaging the case. If your enclosure is different you may need to modify the design to suit, so I have provided the schematic and PCB design files for download. They were created using Eagle. The Eee uses a standard 1.7mm DC power connector with a positive tip.
eee_car_chargerw1
Testing:
Connect the circuit to a 12v supply. If you use a car or lead acid battery ensure you have a 3A fuse fitted in line with the circuit before connecting it, just in case. Use your multimeter to check that the circuit outputs about 9.45v with no load. Connect a 12V, 21W lamp (e.g. old brake lamp from a car) or similar load across the output and check that the voltage doesn’t vary much. You should now be able to connect your Eee. The circuit design should be good for up to 2.5A, so there is plenty of margin for the Eee to fully function and charge its own battery off this supply.
     eee_external_battery0
SLA Battery Carry-bag:
Jaycar have a really cool carry bag with a shoulder strap designed to perfectly fit a 12v 7AH sealed lead acid battery. The bag features a fused cigarette lighter socket and is the perfect compliment to this charger. It works well with the Eee and provides hours of extra use. The shoulder strap means it’s not too bothersome to carry about and the charger circuit itself zips up neatly inside the bag. The under-voltage cut-off means the battery will never run completely flat, and the Eee will simply cut over to its internal battery once the SLA runs out. I got my SLA battery from Rexel as they are much cheaper (approx NZ$18 including GST last time I bought one) and they don’t sit as long on the shelf as many other suppliers.
inside_bag-charger l
Disclaimer:
This circuit is intended for people who have had experience in constructing electronic projects before. The circuit design and build process are provided simply as a reference for other people to use and I take no responsibility for how they are used. If you proceed with building and/or using this design you do so entirely at your own risk. You are free to use the content on this page as you wish, however I do ask that you include a link or reference back to this page if you distribute or publish any of the content to others.
Read More..

Thursday, September 26, 2013

Automatic Air Humidifier

The humidifier circuit is based on a special humidity sensor Type NH-3 from Figaro. Depending on the sensor output, the circuit drives a ventilator that is part of an air humidifying installation. The ventilator is switched on an off by a triac. So as to keep the circuit as simple as possible, the supply voltage and the test voltage are drawn directly from the mains supply. The 240 V mains voltage is converted into an 8.9 V pulsating direct potential by capacitor C1, resistor R1 and zener diode D1. The pulsating voltage is used to drive the sensor.

It is also transformed to a 7.5 V supply voltage by D2 and C2. The sensor needs an alternating drive voltage at a level not higher than 1.5 V. This potential is obtained from the pulsating direct voltage by network R2-R3-C3-C4, which removes the direct voltage component and lowers the level to 1.4 V. At the same time, the network functions as a 50 Hz bandpass filter. To ensure that the drive voltage for the sensor does not fall outside the common-mode range of op amp IC2, an offset potential of 3.9 V is applied to the sensor as well as to the voltage reference source of the op amp.
This potential is provided by zener diode D3. The reference level is set with P1.The op amp is given some hysteresis by R5. When the humidity of the ambient air rises above that corresponding to the level with P1, the output voltage of IC2 is about 6 V. This results in T1 being cut off by D4, whereupon the triac is also disabled. When the humidity drops below that corresponding to the level set with P1, a pulsating potential appears at the output of IC2. This voltage is used to charge capacitor C6.

The charged capacitor thereupon provides a steady current to the triac. When T1 is cut off for some time, capacitor C6 is discharged via resistor R7. Capacitors C1 and C7 are discharged via R9, so that after the mains has been switched off, no dangerous potential remains at the pins of the mains connector (K1). The humidifier is best built on the PCB shown in Figure 2, which is available ready made (see Readers services pages towards the end of this issue). Bear in mind that parts of the board will carry mains voltage, which makes careful working and the enclosing of the board in a plastic case imperative. The humidifier may be converted into a dehumidifier by interchanging connections 1 and 3 to sensor IC1.

Parts list

Resistors:

R1 = 470 Ω, 1 W
R2, R3 = 10 kΩ
R4 = 1 kΩ
R5 = 56 kΩ
R6 = 6.8 kΩ
R7 = 4.7 kΩ
R8 = 470 Ω
R9 = 2.2 MΩ
R10 = 39 Ω, 1 W
P1 = 1 kΩ preset
Capacitors:
C1 = 0.47 µF, 250 V a.c.
C2 = 470 µF, 16 V, radial
C3, C4 = 0.33 µF, metallized polyester, 5%
C5 = 0.1 µF, high stability
C6 = 47 µF, 16 V, radial
C7 = 0.047 µF, 250 V a.c.
Semiconductors:
D1 = zener diode, 8.2 V, 1.3 W
D2 = 1N4001
D3 = zener diode, 3.9 V, 500 mW
D4 = zener diode, 2.4 V, 500 mW
T1 = BC557B
Integrated circuits:
IC1 = NH-3 (Figaro)
IC2 = TLC271CP Tri
1 = TLC336T (SGS)
Miscellaneous:
K1, K2 = 2-way terminal block for board mounting, pitch 7.5 mm
F1 = fuse-holder with 630 mA slow fuse
Read More..

Wednesday, September 25, 2013

RS232 Voltage Regulator

There are many small applications where it would be preferable to power a device directly from an RS232 (V.24) interface, avoiding a mains power supply. Most ICs require 5V, and the interface can provide a current of around 8mA, almost all of which would be consumed by a readily-available voltage regulator, leaving nothing for the actual circuit. Using just four transistors we can construct a voltage regulator with current limiting which will allow us to draw more than the permitted 8mA from an RS232 interface without damaging it. The example circuit in is configured for an output voltage of 5V from an input voltage of at least 8V, and a short-circuit current of 19mA.

The current drawn by the regulator itself is only 0.2mA. The circuit appears very simple, but it is more cunning than it looks. Few people appreciate what a handy device the transistor is. To meet the requirements for the circuit, the gains of the transistors need to be controlled carefully. Here only B-class devices are used, which have a gain of between about 220 and 280. Diodes D1 to D3 extract the positive voltage from the serial interface. Current limiting is achieved via resistor R1 and transistor T1. As soon as the voltage across the resistor reaches 0.7V (at 18mA with R1 = 39Ω) the transistor turns on and thus turns off the output voltage by turning off T2. The output voltage of 5V is set by Zener diode D4.

RS232 Voltage Regulator Circuit DiagramNote that the output voltage is only approximate: beware when using components which have narrow supply voltage tolerances. When the Zener diode voltage and the voltage across transistor T4 are added together, the total is 5.8V. However, because of T3, the diode is operating at a low current and the actual threshold for T4 is 4.9V. The main regulation loop is built around R2 and T2. The high value of R2 (1.5 MΩ) is important, since this limits the maximum current through T2. At the output we would like to be able to draw a maximum current of 19mA. The base of T2 must therefore be supplied with exactly 1/220 (the gain of the transistor) of 19mA, and likewise the current into the base of T3 should be just 1/220 of 80µA. With an input voltage of 9 V the voltage drop across R2 will be 3.3V, and so a current of 2.2µA will flow. Transistor T3 multiplies this current by 220 to 0.5mA, which is also the minimum quiescent current of the circuit.
Read More..

Tuesday, September 24, 2013

Power Buzzer Circuit

How often on average do you have to call members of your family each day to tell them that dinner is ready, it’s time to leave, and the like? The person you want is usually in a different room, such as the hobby room or bedroom. A powerful buzzer in the room, combined with a pushbutton at the bottom of the stairs or in the kitchen, could be very handy in such situations. The heart of this circuit is formed by IC1, a TDA2030. This IC has built-in thermal protection, so it’s not likely to quickly give up the ghost. R1 and R2 apply a voltage equal to half the supply voltage to the plus input of the opamp. R3 provides positive feedback. Finally, the combination of C2, R4 and trimmer P12 determines the oscillation frequency of the circuit.

Power_Buzzer_Circuit_Diagram Power Buzzer Circuit Diagram

The frequency of the tone can also be adjusted using P1. There is no volume control, since you always want to get attention when you press pushbutton S1. Fit the entire circuit where you want to have the pushbutton. The loudspeaker can then be placed in a strategic location, such as in the bedroom or wherever is appropriate. Use speaker cable to connect the loudspeaker. Normal bell wire can cause a significant power loss if the loudspeaker is relatively far away. The loudspeaker must be able to handle a continuous power of at least 6 W (with a 20-V supply voltage).

The power quickly drops as the supply voltage decreases (P = Urms 2 / RL). The power supply for this circuit is not particularly critical. However, it must be able to provide sufficient current. A good nominal value is around 400 mA at 20 V. At 4 V, it will be approximately 25 mA. Most likely, you can find a suitable power supply somewhere in your hobby room. Otherwise, you can certainly find a low-cost power supply design in our circuits archive that will fill the bill!

Author: G. Baars
Copyright: Elektor Electronics

Read More..

Monday, September 23, 2013

Electric Guitar Preamplifier

Here is the circuit diagram of a guitar preamplifier that would accept any standard guitar pickup. It is also versatile in that it has two signal outputs. A typical example of using a pick-up attached to a guitar headstock is shown in Fig. 1. The pickup device has a transducer on one end and a jack on the other end. The jack can be plugged into a preamplifier circuit and then to a power amplifier system. The pickup device captures mechanical vibrations, usually from stringed instruments such as guitar or violin, and converts them into an electrical signal, which can then be amplified by an audio amplifier. It is most often mounted on the body of the instrument, but can also be attached to the bridge, neck, pick-guard or headstock.

Photo Of Electric Guitar PreamplifierThe first part of this preamplifier circuit shown in Fig. 2 is a single-transistor common-emitter amplifier with degenerative feedback in the emitter and a boot-strapped bias divider to secure optimal input impedance. With the component values shown here, the input impedance is above 50 kilo-ohms and the peak output voltage is about 2V RMS. Master-level-control potentiometer VR1 should be adjusted for minimal distortion. The input from guitar pickup is fed to this preamplifier at J1 terminal. The signal is buffered and processed by the op-amp circuit wired around IC TL071 (IC1). Set the gain using preset VR2. The circuit has a master and a slave control. RCA socket J2 is the master signal output socket and socket J3 is the slave.

Electric Guitar Preamplifier Circuit DiagramIt is much better to take the signal from J2 as the input to the power amplifier system or sound mixer. Output signals from J3 can be used to drive a standard headphone amplifier. Using potentiometer VR3, set the slave output signal level at J3. House the circuit in a metallic case. VR1 and VR3 should preferably be the types with metal enclosures. To prevent hum, ground the case and the enclosures. A well-regulated 9V DC power supply is crucial for this circuit. However, a standard 9V alkaline manganese battery can also be used to power the circuit. Switch S1 is a power on/off switch.
Read More..

Sunday, September 22, 2013

Processor Fan Control

Fans in PCs can be objectionably loud. In many cases, the amount of noise produced by the fan can be considerably reduced by lowering its speed. Although this will decrease the amount of cooling, this need not be a problem as long as you don’t go overboard with slowing down the fan. Particularly with older-model processors, which consume quite a bit less power than the latest models, this trick can be used without any problems. This circuit is anyhow intended to be used with relatively old PCs, since more recent models generally have a fan control circuit already integrated into the motherboard. These controllers ensure that the amount of cooling is increased if the processor becomes too warm and decreased if the processor temperature is relatively low.

Processor Fan Controller Circuit DiagramThe circuit described here consists of only a handful of components, which you will probably already have in a drawer some-where. Transistors T1 and T2 are driven into conduction by the base current flowing to the fan via P1 and D1. There will always be a current flowing through R1, and it will be approximately 120 times as large as the current through R2. R3 has been added to prevent the base current of T2 from becoming too large when P2 is set to its minimum resistance. D1 ensures that even at this extreme setting, the voltage on the base-emitter junction of T3 will still be large enough to allow it to conduct.
Read More..

Saturday, September 21, 2013

Modulated Light Barrier

It’s good fun to keep an eye on all sorts of things in your environment and on the basis of events in this environment to switch, for example, lamps or buzzers. To help with this, the light barrier described here can be used to guard an entrance. You can use it to signal of someone is walking through the corridor, or to check if the car has been parked far enough in the garage to be able to close the door. The circuit consists of a transmitter, which sends modulated infrared light and a receiver, which recognizes this.

The circuit used here is almost insensitive to daylight or fluorescent light and therefore can be used outside. The transmitter (Figure 1) generates about 1000 times per second, for a period of 540 ms, a burst of 36 kHz. IC1 has been set with C1, R1 and R2 to a frequency of about 1000 Hz. The output of IC1 ensures that IC2 will oscillate about 1000 times per second for a period of about 540 ms. IC2 is set to a frequency of 36 kHz with C2, P1, R4 and R5. The output of IC2 drives the IR LED D1 via transistor T1. C3 and R3 prevent the reasonably high current through D1 from generating too much interference on the power supply rail.

Modulated Light Barrier transmitter circuit schematic

The receiver (Figure 2) is quite a simple design, because IC3 already does a lot of the work for us. When the IC ‘sees’ an IR-signal with a frequency of 36 kHz, the output of IC3 will become ‘0’. The transmitter circuit alternates between sending an IR-signal of 36 kHz for 540 ms and is quiet for 470 ms. When this signal arrives at IC3, C4 will discharge via D2. Because the non-inverting input of IC4a is set to 2.5 V, with the aid of R10 and R11, the output of IC4a will be a ‘1’. In the intervening quiet periods of 470 ms, C4 will partially charge via R8, but this is not of sufficient duration to exceed the voltage of 2.5 V.

Only when the light barrier is interrupted will C4 charge far enough that the output of IC4a will toggle and become a ‘0’. Because IC4a has an open-collector output, C5 will be immediately discharged and the output of IC4b will become a ‘1’. With R9 and C5 this signal is stretched to about one second. If you increase the value of R9 to 100 k?, then this will become about 10 seconds. R12 and R13 are included to prevent chatter of the output around the trigger point, although there is not really a risk of that happening in this circuit. Together with R14, the output of IC4b delivers a clean logic signal that we can use for further processing.

Modulated Light Barrier receiver circuit schematic

The quickest way of calibrating the frequency of IC2 to 36 kHz, using P1, is with the aid of an oscilloscope. If you do not have one of those, then point the IR-LED D1 at the receiver IC3 and turn P1 so that the voltage on the inverting input of IC4a is as low as possible. Make sure that IC3 during the calibration does not receive too high a signal by placing the IR-LED a considerable distance away or by not pointing directly at the receiver. If this procedure is not that successful then just set P1 to the center position, this works just fine usually. You should not have a problem with ambient light with this circuit. If you do have a problem because, for example, there is direct sunlight on IC3, then you will need to place it inside a small tube and point it at the IR LED.

diagram circuit schematic

In this way no direct sunlight can reach the receiver. If the IR LED and the receiver are placed too close together it is possible that the receiver will sense light reflected off the walls, even when someone is standing between the transmitter and receiver. In this case the solution is also a short piece of tube for both the transmit LED as well as the receiver (Figure 3). Make sure that the tubes are opaque (paint black or use water pipe, for example). The wires to the IR LED can be several meters long without any problems. Do not place the receiver IC too far from the circuit.
Read More..

Friday, September 20, 2013

2005 Gmc 1500 Series Wiring Diagram

2005 Gmc 1500 Series Wiring Diagram


The Part of 2005 Gmc 1500 Series Wiring Diagram: power distribution, fuse block, blower motor
switch, battery, junction block, solenoid ctrl, ctrl module, oil blower motor ctrl, resistor assembly, coolant bypass solenoid ctrl, ignition voltage
Read More..

Thursday, September 19, 2013

Fuse Box BMW Z3 Plug in 1996 Diagram

Fuse Box BMW Z3 Plug in 1996 Diagram - Here are new post for Fuse Box BMW Z3 Plug in 1996 Diagram.

Fuse Box BMW Z3 Plug in 1996 Diagram



Fuse Box BMW Z3 Plug in 1996 Diagram
Fuse Box BMW Z3 Plug in 1996 Diagram

Fuse Panel Layout Diagram Parts: high beam light relay, fuel pump relay, crash control module, auxiliary fuse box.
Read More..

Thursday, September 12, 2013

Lock Down USB Ports via a PIC Based Smart Card Reader

What i am making here is a USB lock with smartcard key. The idea is that a phonecard reader made with a PIC micro will be able to store a number of different phonecards into memory. Whenever one of these cards is inserted into the slot, it will activate a 4-ports USB On/Off switch. If the card is removed, the USB ports will be de-activated.

Lock Down USB Ports via a PIC-Based Smart Card Reader
Read More..

Wednesday, September 11, 2013

Hg Lamp to a Powerful UV Light Source

I got myself some UV-curable solder mask for my PCB workshop, and as soon as i got it, i discovered that my UV artwork transfer box is totally incapable to activate the UV paint and cure it. I began searching the net for powerful UV lamps, and then it hit me: Some months ago i uploaded a theory regarding the Cold and Hot cathode discharge lamps. During my research for these lamps i found out that they can provide directly visible light (lamps without internal coating), or they produce UV radiation. The lamps that produce UV radiation have an extra coating on their internal surface which glows when excited by the UV rays, thus producing light!

Hacking a Hg Lamp to a Powerful UV Light Source
Read More..

Tuesday, September 10, 2013

12V to 30V DC to DC Converter circuit Diagram

 12V to +/- 30V DC to DC Converter circuit Diagram

12V to +/- 30V DC to DC Converter

This is a DC to DC converter for car power amplifier. 12V input generates +30V and -30V output for preamp or power amplifiers. Circuit uses SG3525 IC, Mosfets and switching power supply.
Read More..

Wednesday, September 4, 2013

Simple 555 Amplifier

The 555 can be used as an amplifier. It operates very similar to pulse-width modulation. The component values cause the 555 to oscillate at approx 66kHz and the speaker does not respond to this high frequency.  Instead it responds to the average CD value of the modulated output and demonstrates the concept of pulse-width modulation. The chip gets very hot and is only for brief demonstrations.

Simple 555 Amplifier Circuit Diagram

Simple 555 Amplifier Circuit Diagram

Read More..

Tuesday, September 3, 2013

Phone Hold With Music Circuit

Circuit Diagram 

Description
This circuit will allow you to place a phone call on hold and if you wish to have them listen to music while they are on hold. The circuit operates as follows: The RED wire from the phone jack is typically positive and the GREEN wire is negative or ground. When you want to place a call on hold, close S1 and hang up the handset. The resistor R1 simulates another phone off hook and allows enough
current to pass through to prevent the phone company from disconnecting the call. The resistor R2 and LED provide a visual indication that you have someone on hold ( this is optional )
The capacitor C1 and the transformer provide the interface to a radio or CD player headphone jack. Before you hook up the project to the phone line you must determine the polarity of the line. Place a voltmeter across the red and green wires of the telephone line, there should be about 48 volts
DC positive when the black lead of your meter is connected to the green phone wire. If it is negative 48 volts then reverse the wires.

Source -http://www.electronics-lab.com/
Read More..

Monday, September 2, 2013

Zener Diode Tester Schematic

Using electronic scheme below can be designed a zener diode tester using few electronic parts. Using this zener tester and a multimeter can be measured and determined with a high precision threshold voltage of a zener diode.Zener voltage can be read with a DC voltmeter connected in parallel with zener diode.
 
Zener Diode Tester Circuit Schematic Diagram


If contact S1 is closed, the resistance R1, T1 and Zener diode current flow. Base transistor T1 is connected to power supply trough the R4, so the transistor conducts.

Zener current is equal to the ratio of base-emitter voltage of Q2 and the resistance value R1. With a supply voltage of 25 volts at the actuation keys S1-S3, the current through zener diode take values of about 2.2,6 and 22mA. Resistances R2 and R3 or a combination of R1, R2, R3 can be connected in place of R1 with S2-S3 so that through the zener diode constant current flow.

Read More..

Sunday, September 1, 2013

Electronic Cricket Match Game

This electronic cricket is a present for Kids. This simple battery powered circuit can be used to play Cricket Match with your friends. Each LED in the circuit indicates various status of the cricket match like Sixer, Run out, Catch etc. The Circuit uses two ICs ,one in the Astable mode and the second in the display driver mode. IC1 is wired as an Astable Multivibrator with the timing elements R1, R2 and C1.

With the shown values of these components very fast output pulses are generated from the Astable. Output from IC1 passes into the input of IC2 which is the popular Johnson Decade counter CD4017. It has 10 outputs. Of these 8 outputs are used. Output 9 ( pin9) is tied to the reset pin 15 to repeat the cycle. When the input pin 14 of IC2 gets low to high pluses, its output turns high one by one. Resistor R3 keeps the input of IC2 low in stand by state to avoid false indications.

 Electronic Cricket Circuit diagram:



When the Push Switch S1 is pressed momentarily, the Astable operates and all the LEDs run very fast sequentially. When S1 is released, any one of the LED stands lit which indicates the status of the match. For example, if LED D7 remains lit, it indicates Sixer and if LED 8 remains lit, it indicates Catch out. Label each LED for its status as shown in the diagram. Pressing of S1 simulates Bowling and Running LEDs indicates running of Batsman.
Read More..